Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(728): eadk5413, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170792

RESUMO

The choroid plexus (ChP) of the brain plays a central role in orchestrating the recruitment of peripheral leukocytes into the central nervous system (CNS) through the blood-cerebrospinal fluid (BCSF) barrier in pathological conditions, thus offering a unique niche to diagnose CNS disorders. We explored whether magnetic resonance imaging of the ChP could be optimized for mild traumatic brain injury (mTBI). mTBI induces subtle, yet influential, changes in the brain and is currently severely underdiagnosed. We hypothesized that mTBI induces sufficient alterations in the ChP to cause infiltration of circulating leukocytes through the BCSF barrier and developed macrophage-adhering gadolinium [Gd(III)]-loaded anisotropic micropatches (GLAMs), specifically designed to image infiltrating immune cells. GLAMs are hydrogel-based discoidal microparticles that adhere to macrophages without phagocytosis. We present a fabrication process to prepare GLAMs at scale and demonstrate their loading with Gd(III) at high relaxivities, a key indicator of their effectiveness in enhancing image contrast and clarity in medical imaging. In vitro experiments with primary murine and porcine macrophages demonstrated that GLAMs adhere to macrophages also under shear stress and did not affect macrophage viability or functions. Studies in a porcine mTBI model confirmed that intravenously administered macrophage-adhering GLAMs provide a differential signal in the ChP and lateral ventricles at Gd(III) doses 500- to 1000-fold lower than those used in the current clinical standard Gadavist. Under the same mTBI conditions, Gadavist did not offer a differential signal at clinically used doses. Our results suggest that macrophage-adhering GLAMs could facilitate mTBI diagnosis.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Animais , Camundongos , Suínos , Gadolínio , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Concussão Encefálica/patologia , Macrófagos/patologia
2.
Adv Drug Deliv Rev ; 199: 114949, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37286086

RESUMO

The proximity and association of cerebrospinal fluid (CSF) and the intrathecal (IT) space with deep targets in the central nervous system (CNS) parenchyma makes IT injection an attractive route of administration for brain drug delivery. However, the extent to which intrathecally administered macromolecules are effective in treating neurological diseases is a question of both clinical debate and technological interest. We present the biological, chemical, and physical properties of the intrathecal space that are relevant to drug absorption, distribution, metabolism, and elimination from CSF. We then analyze the evolution of IT drug delivery in clinical trials over the last 20 years. Our analysis revealed that the percentage of clinical trials assessing IT delivery for the delivery of biologics (i.e., macromolecules, cells) for treatment of chronic conditions (e.g., neurodegeneration, cancer, and metabolic diseases) has steadily increased. Clinical trials exploring cell or macromolecular delivery within the IT space have not evaluated engineering technologies, such as depots, particles, or other delivery systems. Recent pre-clinical studies have evaluated IT macromolecule delivery in small animals, postulating that delivery efficacy can be assisted by external medical devices, micro- or nanoparticles, bulk biomaterials, and viral vectors. Further studies are necessary to evaluate the extent to which engineering technologies and IT administration improve CNS targeting and therapeutic outcome.


Assuntos
Encéfalo , Sistemas de Liberação de Medicamentos , Animais , Encéfalo/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(17): e2221535120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37075071

RESUMO

Multiple sclerosis (MS) is an incurable autoimmune disease and is currently treated by systemic immunosuppressants with off-target side effects. Although aberrant myeloid function is often observed in MS plaques in the central nervous system (CNS), the role of myeloid cells in therapeutic intervention is currently overlooked. Here, we developed a myeloid cell-based strategy to reduce the disease burden in experimental autoimmune encephalomyelitis (EAE), a mouse model of progressive MS. We developed monocyte-adhered microparticles ("backpacks") for activating myeloid cell phenotype to an anti-inflammatory state through localized interleukin-4 and dexamethasone signals. We demonstrate that backpack-laden monocytes infiltrated into the inflamed CNS and modulated both the local and systemic immune responses. Within the CNS, backpack-carrying monocytes regulated both the infiltrating and tissue-resident myeloid cell compartments in the spinal cord for functions related to antigen presentation and reactive species production. Treatment with backpack-monocytes also decreased the level of systemic pro-inflammatory cytokines. Additionally, backpack-laden monocytes induced modulatory effects on TH1 and TH17 populations in the spinal cord and blood, demonstrating cross talk between the myeloid and lymphoid arms of disease. Backpack-carrying monocytes conferred therapeutic benefit in EAE mice, as quantified by improved motor function. The use of backpack-laden monocytes offers an antigen-free, biomaterial-based approach to precisely tune cell phenotype in vivo, demonstrating the utility of myeloid cells as a therapeutic modality and target.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Esclerose Múltipla/terapia , Células Mieloides , Sistema Nervoso Central , Monócitos , Camundongos Endogâmicos C57BL
4.
Mater Today (Kidlington) ; 62: 190-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36938366

RESUMO

Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36912849

RESUMO

Multifunctional hydrogels composed of segments with ionizable, hydrophilic, and hydrophobic monomers have been optimized for sensing, bioseparation, and therapeutic applications. While the "biological identity" of bound proteins from biofluids underlies device performance in each context, design rules that predict protein binding outcomes from hydrogel design parameters are lacking. Uniquely, hydrogel designs that influence protein affinity (e.g., ionizable monomers, hydrophobic moieties, conjugated ligands, cross-linking) also affect physical properties (e.g., matrix stiffness, volumetric swelling). Here, we evaluated the influence of hydrophobic comonomer steric bulk and quantity on the protein recognition characteristics of ionizable microscale hydrogels (microgels) while controlling for swelling. Using a library synthesis approach, we identified compositions that balance the practical balance between protein-microgel affinity and the loaded mass at saturation. Intermediate quantities (10-30 mol %) of hydrophobic comonomer increased the equilibrium binding of certain model proteins (lysozyme, lactoferrin) in buffer conditions that favored complementary electrostatic interactions. Solvent-accessible surface area analysis of model proteins identified arginine content as highly predictive of model proteins' binding to our library of hydrogels containing acidic and hydrophobic comonomers. Taken together, we established an empirical framework for characterizing the molecular recognition properties of multifunctional hydrogels. Our study is the first to identify solvent-accessible arginine as an important predictor for protein binding to hydrogels containing both acidic and hydrophobic subunits.

6.
Bioeng Transl Med ; 6(2): e10214, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34027097

RESUMO

Cell therapies have emerged as a promising therapeutic modality with the potential to treat and even cure a diverse array of diseases. Cell therapies offer unique clinical and therapeutic advantages over conventional small molecules and the growing number of biologics. Particularly, living cells can simultaneously and dynamically perform complex biological functions in ways that conventional drugs cannot; cell therapies have expanded the spectrum of available therapeutic options to include key cellular functions and processes. As such, cell therapies are currently one of the most investigated therapeutic modalities in both preclinical and clinical settings, with many products having been approved and many more under active clinical investigation. Here, we highlight the diversity and key advantages of cell therapies and discuss their current clinical advances. In particular, we review 28 globally approved cell therapy products and their clinical use. We also analyze >1700 current active clinical trials of cell therapies, with an emphasis on discussing their therapeutic applications. Finally, we critically discuss the major biological, manufacturing, and regulatory challenges associated with the clinical translation of cell therapies.

7.
Adv Drug Deliv Rev ; 177: 113807, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34023331

RESUMO

Shape of particulate drug carries has been identified as a key parameter in determining their biological outcome. In this review, we analyze the field of particle shape as it shifts from fundamental investigations to contemporary applications for disease treatment, while highlighting outstanding remaining questions. We summarize fabrication and characterization methods and discuss in depth how particle shape influences biological interactions with cells, transport in the vasculature, targeting in the body, and modulation of the immune response. As the field moves from discoveries to applications, further attention needs to be paid to factors such as characterization and quality control, selection of model organisms, and disease models. Taken together, these aspects will provide a conceptual foundation for designing future non-spherical drug carriers to overcome biological barriers and improve therapeutic efficacy.


Assuntos
Sistemas de Liberação de Medicamentos/tendências , Nanopartículas , Animais , Humanos , Sistema Imunitário/efeitos dos fármacos , Nanopartículas/administração & dosagem
8.
J Control Release ; 329: 1162-1171, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33127451

RESUMO

Nanoparticles must recognize, adhere to, and/or traverse multiple barriers in sequence to achieve cytosolic drug delivery. New nanoparticles often exhibit a unique ability to cross a single barrier (i.e. the vasculature, cell membrane, or endosomal compartment), but fail to deliver an adequate dose to intracellular sites of action because they cannot traverse other biological barriers for which they were not optimized. Here, we developed poly(acrylamide-co-methacrylic acid) nanogels that were modified in a modular manner with bioactive peptides. This nanogel does not recognize target cells or disrupt endosomal vesicles in its unmodified state, but can incorporate peptides with molecular recognition or environmentally responsive properties. Nanogels were modified with up to 15 wt% peptide without significantly altering their size, surface charge, or stability in aqueous buffer. Nanogels modified with a colon cancer-targeting oligopeptide exhibited up to a 324% enhancement in co-localization with SW-48 colon cancer cells in vitro, while influencing nanogel uptake by fibroblasts and macrophages to a lesser extent. Nanogels modified with an endosome disrupting peptide failed to retain its native endosomolytic activity, when coupled either individually or in combination with the targeting peptide. Our results offer a proof-of-concept for modifying synthetic nanogels with a combination of peptides that address barriers to cytosolic delivery individually and in tandem. Our data further motivate the need to identify endosome disrupting moieties which retain their activity within poly(acidic) networks.


Assuntos
Nanopartículas , Acrilamidas , Endossomos , Metacrilatos , Nanogéis , Peptídeos
9.
Bioeng Transl Med ; 5(2): e10158, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440563

RESUMO

Injectable hydrogels are one of the most widely investigated and versatile technologies for drug delivery and tissue engineering applications. Hydrogels' versatility arises from their tunable structure, which has been enabled by considerable advances in fields such as materials engineering, polymer science, and chemistry. Advances in these fields continue to lead to invention of new polymers, new approaches to crosslink polymers, new strategies to fabricate hydrogels, and new applications arising from hydrogels for improving healthcare. Various hydrogel technologies have received regulatory approval for healthcare applications ranging from cancer treatment to aesthetic corrections to spinal fusion. Beyond these applications, hydrogels are being studied in clinical settings for tissue regeneration, incontinence, and other applications. Here, we analyze the current clinical landscape of injectable hydrogel technologies, including hydrogels that have been clinically approved or are currently being investigated in clinical settings. We summarize our analysis to highlight key clinical areas that hydrogels have found sustained success in and further discuss challenges that may limit their future clinical translation.

10.
Biomacromolecules ; 21(4): 1528-1538, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32207917

RESUMO

Tuning the composition of antimicrobial nanogels can significantly alter both nanogel cytotoxicity and antibacterial activity. This project investigated the extent to which PEGylation of cationic, hydrophobic nanogels altered their cytotoxicity and bactericidal activity. These biodegradable, cationic nanogels were synthesized by activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) emulsion polymerization with up to 13.9 wt % PEG (MW = 2000) MA, as verified by 1H NMR. Nanogel bactericidal activity was assessed against Gram-negative E. coli and P. aeruginosa and Gram-positive S. mutans and S. aureus by measuring membrane lysis with a LIVE/DEAD assay. E. coli and S. mutans viability was further validated by measuring metabolic activity with a PrestoBlue assay and imaging bacteria stained with a LIVE/DEAD probe. All tested nanogels decreased the membrane integrity (0.5 mg/mL dose) for Gram-negative E. coli and P. aeruginosa, irrespective of the extent of PEGylation. PEGylation (13.9 wt %) increased the cytocompatibility of cationic nanogels toward RAW 264.7 murine macrophages and L929 murine fibroblasts by over 100-fold, relative to control nanogels. PEGylation (42.8 wt %) reduced nanogel uptake by 43% for macrophages and 63% for fibroblasts. Therefore, PEGylation reduced nanogel toxicity to mammalian cells without significantly compromising their bactericidal activity. These results facilitate future nanogel design for perturbing the growth of Gram-negative bacteria.


Assuntos
Escherichia coli , Staphylococcus aureus , Animais , Camundongos , Nanogéis , Polietilenoglicóis , Polietilenoimina
11.
Soft Matter ; 16(4): 856-869, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932836

RESUMO

Biomacromolecules and engineered materials can achieve molecular recognition if they engage their ligand with properly oriented and chemically complementary moieties. Recently, there has been significant interest in fabricating recognitive soft materials, which possess specific affinity for biological analytes. We present a summary and evaluation of current recognitive materials for biosensing, drug delivery, and regenerative medicine applications. We highlight the impact of material composition on the extent and specificity of ligand adsorption, citing new theoretical and empirical evidence. We conclude with a guide for synthesizing and characterizing novel recognitive materials, as well as recommendations for ligand selection and experimental design.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos , Polímeros/química , Adsorção , Materiais Biocompatíveis/uso terapêutico , Humanos , Ligantes , Estrutura Molecular , Medicina Regenerativa
12.
J Mater Chem B ; 8(34): 7685-7695, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33456778

RESUMO

Synthetic hydrogels with the ability to recognize and bind target proteins are useful for a number of applications, including biosensing and therapeutic agent delivery. One popular method for fabricating recognitive hydrogels is molecular imprinting. A long-standing hypothesis of the field is that these molecularly imprinted polymers (MIPs) retain the chemical and geometric profile of their protein template, resulting in subsequent ability to recognize the template in solution. Here, we systematically determined the influence of network composition, as well as the identity, amount, and extraction of imprinting templates, on the protein binding of MIPs. Network composition (i.e. the relative number of ionizable and hydrophobic groups) explained the extent of protein adsorption in all cases. The identity and amount of imprinting template, albeit a protein or synthetic polymer (PEG) of similar molecular weight, did not significantly influence the amount of protein bound. While the purification method influenced the extent of template adsorption, it did so by chemically modifying the network (acrylamide hydrolysis, increasing the acid content by up to 21%) and not by voiding occupied MIP pores. Therefore, our results indicate that material composition determines the extent to which MIPs bind template and non-template proteins.


Assuntos
Resinas Acrílicas/metabolismo , Hidrogéis/metabolismo , Impressão Molecular/métodos , Proteínas/metabolismo , Resinas Acrílicas/química , Adsorção , Animais , Bovinos , Galinhas , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Muramidase/química , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Ligação Proteica , Proteínas/química , Soroalbumina Bovina/química , Eletricidade Estática , gama-Globulinas/química
13.
J Appl Polym Sci ; 137(25)2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34732941

RESUMO

Environmentally responsive nanomaterials have been developed for drug delivery applications, in an effort to target and accumulate therapeutic agents at sites of disease. Within a biological system, these nanomaterials will experience diverse conditions which encompass a variety of solute identities and concentrations. In this study, we developed a new quartz crystal microbalance with dissipation (QCM-D) assay, which enabled the quantitative analysis of nanogel swelling, protein adsorption, and biodegradation in a single experiment. As a proof of concept, we employed this assay to characterize non-degradable and biodegradable poly(acrylamide-co-methacrylic acid) nanogels. We compared the QCM-D results to those obtained by dynamic light scattering to highlight the advantages and limitations of each method. We detailed our protocol development and practical recommendations, and hope that this study will serve as a guide for others to design application-specific QCM-D assays within the nanomedicine domain.

14.
Sci Adv ; 5(9): eaax7946, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31598554

RESUMO

Formulations and devices for precision medicine applications must be tunable and multiresponsive to treat heterogeneous patient populations in a calibrated and individual manner. We engineered modular poly(acrylamide-co-methacrylic acid) copolymers, cross-linked into multiresponsive nanogels with either a nondegradable or degradable disulfide cross-linker, that were customized via orthogonal chemistries to target biomarkers of an individual patient's disease or deliver multiple therapeutic modalities. Upon modification with functional small molecules, peptides, or proteins, these nanomaterials delivered methylene blue with environmental responsiveness, transduced visible light for photothermal therapy, acted as a functional enzyme, or promoted uptake by cells. In addition to quantifying the nanogels' composition, physicochemical characteristics, and cytotoxicity, we used a QCM-D method for characterizing nanomaterial degradation and a high-throughput assay for cellular uptake. In conclusion, we generated a tunable nanogel composition for precision medicine applications and new quantitative protocols for assessing the bioactivity of similar platforms.


Assuntos
Portadores de Fármacos , Nanogéis/química , Nanopartículas/química , Medicina de Precisão , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Metacrilatos/química , Metacrilatos/farmacocinética , Metacrilatos/farmacologia , Camundongos , Células RAW 264.7
15.
Prog Mater Sci ; 1062019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32189815

RESUMO

One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.

17.
J Biomed Mater Res A ; 106(6): 1677-1686, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453807

RESUMO

Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018.


Assuntos
Resinas Acrílicas/química , Emulsões/química , Hidrogéis/química , Nanopartículas/química , Ácidos Polimetacrílicos/química , Acrilamidas/química , Animais , Portadores de Fármacos/química , Camundongos , Nanopartículas/ultraestrutura , Polimerização , Células RAW 264.7
18.
Acc Chem Res ; 50(2): 170-178, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28170227

RESUMO

Nature has mastered the art of molecular recognition. For example, using synergistic non-covalent interactions, proteins can distinguish between molecules and bind a partner with incredible affinity and specificity. Scientists have developed, and continue to develop, techniques to investigate and better understand molecular recognition. As a consequence, analyte-responsive hydrogels that mimic these recognitive processes have emerged as a class of intelligent materials. These materials are unique not only in the type of analyte to which they respond but also in how molecular recognition is achieved and how the hydrogel responds to the analyte. Traditional intelligent hydrogels can respond to environmental cues such as pH, temperature, and ionic strength. The functional monomers used to make these hydrogels can be varied to achieve responsive behavior. For analyte-responsive hydrogels, molecular recognition can also be achieved by incorporating biomolecules with inherent molecular recognition properties (e.g., nucleic acids, peptides, enzymes, etc.) into the polymer network. Furthermore, in addition to typical swelling/syneresis responses, these materials exhibit unique responsive behaviors, such as gel assembly or disassembly, upon interaction with the target analyte. With the diverse tools available for molecular recognition and the ability to generate unique responsive behaviors, analyte-responsive hydrogels have found great utility in a wide range of applications. In this Account, we discuss strategies for making four different classes of analyte-responsive hydrogels, specifically, non-imprinted, molecularly imprinted, biomolecule-containing, and enzymatically responsive hydrogels. Then we explore how these materials have been incorporated into sensors and drug delivery systems, highlighting examples that demonstrate the versatility of these materials. For example, in addition to the molecular recognition properties of analyte-responsive hydrogels, the physicochemical changes that are induced upon analyte binding can be exploited to generate a detectable signal for sensing applications. As research in this area has grown, a number of creative approaches for improving the selectivity and sensitivity (i.e., detection limit) of these sensors have emerged. For applications in drug delivery systems, therapeutic release can be triggered by competitive molecular interactions or physicochemical changes in the network. Additionally, including degradable units within the network can enable sustained and responsive therapeutic release. Several exciting examples exploiting the analyte-responsive behavior of hydrogels for the treatment of cancer, diabetes, and irritable bowel syndrome are discussed in detail. We expect that creative and combinatorial approaches used in the design of analyte-responsive hydrogels will continue to yield materials with great potential in the fields of sensing and drug delivery.


Assuntos
Técnicas Biossensoriais , Portadores de Fármacos/química , Hidrogéis/química , Animais , Materiais Biocompatíveis/química , Diabetes Mellitus Experimental/tratamento farmacológico , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/uso terapêutico , Insulina/química , Insulina/uso terapêutico , Impressão Molecular , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Polímeros/química
19.
J Biomed Mater Res A ; 105(6): 1565-1574, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28177574

RESUMO

Molecularly imprinted polymers (MIPs) with selective affinity for protein biomarkers could find extensive utility as environmentally robust, cost-efficient biomaterials for diagnostic and therapeutic applications. In order to develop recognitive, synthetic biomaterials for prohibitively expensive protein biomarkers, we have developed a molecular imprinting technique that utilizes structurally similar, analogue proteins. Hydrogel microparticles synthesized by molecular imprinting with trypsin, lysozyme, and cytochrome c possessed an increased affinity for alternate high isoelectric point biomarkers both in isolation and plasma-mimicking adsorption conditions. Imprinted and non-imprinted P(MAA-co-AAm-co-DEAEMA) microgels containing PMAO-PEGMA functionalized polycaprolactone nanoparticles were net-anionic, polydisperse, and irregularly shaped. MIPs and control non-imprinted polymers (NIPs) exhibited regions of Freundlich and BET isotherm adsorption behavior in a range of non-competitive protein solutions, where MIPs exhibited enhanced adsorption capacity in the Freundlich isotherm regions. In a competitive condition, imprinting with analogue templates (trypsin, lysozyme) increased the adsorption capacity of microgels for cytochrome c by 162% and 219%, respectively, as compared to a 122% increase provided by traditional bulk imprinting with cytochrome c. Our results suggest that molecular imprinting with analogue protein templates is a viable synthetic strategy for enhancing hydrogel-biomarker affinity and promoting specific protein adsorption behavior in biological fluids. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1565-1574, 2017.


Assuntos
Hidrogéis/química , Impressão Molecular/métodos , Nanopartículas/química , Poliésteres/química , Polímeros/química , Proteínas/isolamento & purificação , Adsorção , Animais , Distinções e Prêmios , Materiais Biocompatíveis/química , Biomarcadores/análise , Bovinos , Galinhas , Ponto Isoelétrico , Nanopartículas/ultraestrutura , Polianidridos/química , Polietilenoglicóis/química , Proteínas/análise , Estudantes
20.
Regen Eng Transl Med ; 3(3): 166-175, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30906848

RESUMO

The emerging field of regenerative engineering offers a great challenge and an even greater opportunity for materials scientists and engineers. How can we develop materials that are highly porous to permit cellular infiltration, yet possess sufficient mechanical integrity to mimic native tissues? How can we retain and deliver bioactive molecules to drive cell organization, proliferation, and differentiation in a predictable manner? In the following perspective, we highlight recent studies that have demonstrated the vital importance of each of these questions, as well as many others pertaining to scaffold development. We posit hybrid materials synthesized by molecular decoration and molecular imprinting as intelligent biomaterials for regenerative engineering applications. These materials have potential to present cell adhesion molecules and soluble growth factors with fine-tuned spatial and temporal control, in response to both cell-driven and external triggers. Future studies in this area will address a pertinent clinical need, expand the existing repertoire of medical materials, and improve the field's understanding of how cells and materials respond to one another.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...